3.4.56 \(\int \frac {2+x+3 x^2-x^3+5 x^4}{(5+2 x)^3 (3-x+2 x^2)^{3/2}} \, dx\) [356]

3.4.56.1 Optimal result
3.4.56.2 Mathematica [A] (verified)
3.4.56.3 Rubi [A] (verified)
3.4.56.4 Maple [F(-1)]
3.4.56.5 Fricas [A] (verification not implemented)
3.4.56.6 Sympy [F]
3.4.56.7 Maxima [A] (verification not implemented)
3.4.56.8 Giac [B] (verification not implemented)
3.4.56.9 Mupad [F(-1)]

3.4.56.1 Optimal result

Integrand size = 40, antiderivative size = 112 \[ \int \frac {2+x+3 x^2-x^3+5 x^4}{(5+2 x)^3 \left (3-x+2 x^2\right )^{3/2}} \, dx=\frac {65991-8779 x}{4292352 \sqrt {3-x+2 x^2}}-\frac {3667 \sqrt {3-x+2 x^2}}{20736 (5+2 x)^2}+\frac {115369 \sqrt {3-x+2 x^2}}{1492992 (5+2 x)}-\frac {52631 \text {arctanh}\left (\frac {17-22 x}{12 \sqrt {2} \sqrt {3-x+2 x^2}}\right )}{5971968 \sqrt {2}} \]

output
-52631/11943936*arctanh(1/24*(17-22*x)*2^(1/2)/(2*x^2-x+3)^(1/2))*2^(1/2)+ 
1/4292352*(65991-8779*x)/(2*x^2-x+3)^(1/2)-3667/20736*(2*x^2-x+3)^(1/2)/(5 
+2*x)^2+115369/1492992*(2*x^2-x+3)^(1/2)/(5+2*x)
 
3.4.56.2 Mathematica [A] (verified)

Time = 0.49 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.68 \[ \int \frac {2+x+3 x^2-x^3+5 x^4}{(5+2 x)^3 \left (3-x+2 x^2\right )^{3/2}} \, dx=\frac {\frac {12 \left (11594283+5842933 x+3263288 x^2+3444340 x^3\right )}{(5+2 x)^2 \sqrt {3-x+2 x^2}}+1210513 \sqrt {2} \text {arctanh}\left (\frac {1}{6} \left (5+2 x-\sqrt {6-2 x+4 x^2}\right )\right )}{137355264} \]

input
Integrate[(2 + x + 3*x^2 - x^3 + 5*x^4)/((5 + 2*x)^3*(3 - x + 2*x^2)^(3/2) 
),x]
 
output
((12*(11594283 + 5842933*x + 3263288*x^2 + 3444340*x^3))/((5 + 2*x)^2*Sqrt 
[3 - x + 2*x^2]) + 1210513*Sqrt[2]*ArcTanh[(5 + 2*x - Sqrt[6 - 2*x + 4*x^2 
])/6])/137355264
 
3.4.56.3 Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.05, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.175, Rules used = {2177, 27, 2181, 27, 1228, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {5 x^4-x^3+3 x^2+x+2}{(2 x+5)^3 \left (2 x^2-x+3\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 2177

\(\displaystyle \frac {2}{23} \int \frac {23 \left (977500 x^2+632660 x+224707\right )}{746496 (2 x+5)^3 \sqrt {2 x^2-x+3}}dx+\frac {65991-8779 x}{4292352 \sqrt {2 x^2-x+3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {977500 x^2+632660 x+224707}{(2 x+5)^3 \sqrt {2 x^2-x+3}}dx}{373248}+\frac {65991-8779 x}{4292352 \sqrt {2 x^2-x+3}}\)

\(\Big \downarrow \) 2181

\(\displaystyle \frac {-\frac {1}{144} \int \frac {288 (73238-178369 x)}{(2 x+5)^2 \sqrt {2 x^2-x+3}}dx-\frac {66006 \sqrt {2 x^2-x+3}}{(2 x+5)^2}}{373248}+\frac {65991-8779 x}{4292352 \sqrt {2 x^2-x+3}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-2 \int \frac {73238-178369 x}{(2 x+5)^2 \sqrt {2 x^2-x+3}}dx-\frac {66006 \sqrt {2 x^2-x+3}}{(2 x+5)^2}}{373248}+\frac {65991-8779 x}{4292352 \sqrt {2 x^2-x+3}}\)

\(\Big \downarrow \) 1228

\(\displaystyle \frac {-2 \left (-\frac {157893}{16} \int \frac {1}{(2 x+5) \sqrt {2 x^2-x+3}}dx-\frac {115369 \sqrt {2 x^2-x+3}}{8 (2 x+5)}\right )-\frac {66006 \sqrt {2 x^2-x+3}}{(2 x+5)^2}}{373248}+\frac {65991-8779 x}{4292352 \sqrt {2 x^2-x+3}}\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {-2 \left (\frac {157893}{8} \int \frac {1}{288-\frac {(17-22 x)^2}{2 x^2-x+3}}d\frac {17-22 x}{\sqrt {2 x^2-x+3}}-\frac {115369 \sqrt {2 x^2-x+3}}{8 (2 x+5)}\right )-\frac {66006 \sqrt {2 x^2-x+3}}{(2 x+5)^2}}{373248}+\frac {65991-8779 x}{4292352 \sqrt {2 x^2-x+3}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {-2 \left (\frac {52631 \text {arctanh}\left (\frac {17-22 x}{12 \sqrt {2} \sqrt {2 x^2-x+3}}\right )}{32 \sqrt {2}}-\frac {115369 \sqrt {2 x^2-x+3}}{8 (2 x+5)}\right )-\frac {66006 \sqrt {2 x^2-x+3}}{(2 x+5)^2}}{373248}+\frac {65991-8779 x}{4292352 \sqrt {2 x^2-x+3}}\)

input
Int[(2 + x + 3*x^2 - x^3 + 5*x^4)/((5 + 2*x)^3*(3 - x + 2*x^2)^(3/2)),x]
 
output
(65991 - 8779*x)/(4292352*Sqrt[3 - x + 2*x^2]) + ((-66006*Sqrt[3 - x + 2*x 
^2])/(5 + 2*x)^2 - 2*((-115369*Sqrt[3 - x + 2*x^2])/(8*(5 + 2*x)) + (52631 
*ArcTanh[(17 - 22*x)/(12*Sqrt[2]*Sqrt[3 - x + 2*x^2])])/(32*Sqrt[2])))/373 
248
 

3.4.56.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1228
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + 
 b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Simp[(b*(e 
*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^ 
(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x 
] && EqQ[Simplify[m + 2*p + 3], 0]
 

rule 2177
Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p 
_), x_Symbol] :> With[{Qx = PolynomialQuotient[(d + e*x)^m*Pq, a + b*x + c* 
x^2, x], R = Coeff[PolynomialRemainder[(d + e*x)^m*Pq, a + b*x + c*x^2, x], 
 x, 0], S = Coeff[PolynomialRemainder[(d + e*x)^m*Pq, a + b*x + c*x^2, x], 
x, 1]}, Simp[(b*R - 2*a*S + (2*c*R - b*S)*x)*((a + b*x + c*x^2)^(p + 1)/((p 
 + 1)*(b^2 - 4*a*c))), x] + Simp[1/((p + 1)*(b^2 - 4*a*c))   Int[(d + e*x)^ 
m*(a + b*x + c*x^2)^(p + 1)*ExpandToSum[((p + 1)*(b^2 - 4*a*c)*Qx)/(d + e*x 
)^m - ((2*p + 3)*(2*c*R - b*S))/(d + e*x)^m, x], x], x]] /; FreeQ[{a, b, c, 
 d, e}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a* 
e^2, 0] && LtQ[p, -1] && ILtQ[m, 0]
 

rule 2181
Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_ 
), x_Symbol] :> With[{Qx = PolynomialQuotient[Pq, d + e*x, x], R = Polynomi 
alRemainder[Pq, d + e*x, x]}, Simp[(e*R*(d + e*x)^(m + 1)*(a + b*x + c*x^2) 
^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Simp[1/((m + 1)*(c*d^2 - 
b*d*e + a*e^2))   Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*ExpandToSum[(m 
+ 1)*(c*d^2 - b*d*e + a*e^2)*Qx + c*d*R*(m + 1) - b*e*R*(m + p + 2) - c*e*R 
*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, c, d, e, p}, x] && PolyQ[Pq, 
x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1]
 
3.4.56.4 Maple [F(-1)]

Timed out.

hanged

input
int((5*x^4-x^3+3*x^2+x+2)/(5+2*x)^3/(2*x^2-x+3)^(3/2),x)
 
output
int((5*x^4-x^3+3*x^2+x+2)/(5+2*x)^3/(2*x^2-x+3)^(3/2),x)
 
3.4.56.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.12 \[ \int \frac {2+x+3 x^2-x^3+5 x^4}{(5+2 x)^3 \left (3-x+2 x^2\right )^{3/2}} \, dx=\frac {1210513 \, \sqrt {2} {\left (8 \, x^{4} + 36 \, x^{3} + 42 \, x^{2} + 35 \, x + 75\right )} \log \left (-\frac {24 \, \sqrt {2} \sqrt {2 \, x^{2} - x + 3} {\left (22 \, x - 17\right )} + 1060 \, x^{2} - 1036 \, x + 1153}{4 \, x^{2} + 20 \, x + 25}\right ) + 48 \, {\left (3444340 \, x^{3} + 3263288 \, x^{2} + 5842933 \, x + 11594283\right )} \sqrt {2 \, x^{2} - x + 3}}{549421056 \, {\left (8 \, x^{4} + 36 \, x^{3} + 42 \, x^{2} + 35 \, x + 75\right )}} \]

input
integrate((5*x^4-x^3+3*x^2+x+2)/(5+2*x)^3/(2*x^2-x+3)^(3/2),x, algorithm=" 
fricas")
 
output
1/549421056*(1210513*sqrt(2)*(8*x^4 + 36*x^3 + 42*x^2 + 35*x + 75)*log(-(2 
4*sqrt(2)*sqrt(2*x^2 - x + 3)*(22*x - 17) + 1060*x^2 - 1036*x + 1153)/(4*x 
^2 + 20*x + 25)) + 48*(3444340*x^3 + 3263288*x^2 + 5842933*x + 11594283)*s 
qrt(2*x^2 - x + 3))/(8*x^4 + 36*x^3 + 42*x^2 + 35*x + 75)
 
3.4.56.6 Sympy [F]

\[ \int \frac {2+x+3 x^2-x^3+5 x^4}{(5+2 x)^3 \left (3-x+2 x^2\right )^{3/2}} \, dx=\int \frac {5 x^{4} - x^{3} + 3 x^{2} + x + 2}{\left (2 x + 5\right )^{3} \left (2 x^{2} - x + 3\right )^{\frac {3}{2}}}\, dx \]

input
integrate((5*x**4-x**3+3*x**2+x+2)/(5+2*x)**3/(2*x**2-x+3)**(3/2),x)
 
output
Integral((5*x**4 - x**3 + 3*x**2 + x + 2)/((2*x + 5)**3*(2*x**2 - x + 3)** 
(3/2)), x)
 
3.4.56.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 149, normalized size of antiderivative = 1.33 \[ \int \frac {2+x+3 x^2-x^3+5 x^4}{(5+2 x)^3 \left (3-x+2 x^2\right )^{3/2}} \, dx=\frac {52631}{11943936} \, \sqrt {2} \operatorname {arsinh}\left (\frac {22 \, \sqrt {23} x}{23 \, {\left | 2 \, x + 5 \right |}} - \frac {17 \, \sqrt {23}}{23 \, {\left | 2 \, x + 5 \right |}}\right ) + \frac {861085 \, x}{11446272 \, \sqrt {2 \, x^{2} - x + 3}} - \frac {1163201}{3815424 \, \sqrt {2 \, x^{2} - x + 3}} - \frac {3667}{1152 \, {\left (4 \, \sqrt {2 \, x^{2} - x + 3} x^{2} + 20 \, \sqrt {2 \, x^{2} - x + 3} x + 25 \, \sqrt {2 \, x^{2} - x + 3}\right )}} + \frac {196043}{82944 \, {\left (2 \, \sqrt {2 \, x^{2} - x + 3} x + 5 \, \sqrt {2 \, x^{2} - x + 3}\right )}} \]

input
integrate((5*x^4-x^3+3*x^2+x+2)/(5+2*x)^3/(2*x^2-x+3)^(3/2),x, algorithm=" 
maxima")
 
output
52631/11943936*sqrt(2)*arcsinh(22/23*sqrt(23)*x/abs(2*x + 5) - 17/23*sqrt( 
23)/abs(2*x + 5)) + 861085/11446272*x/sqrt(2*x^2 - x + 3) - 1163201/381542 
4/sqrt(2*x^2 - x + 3) - 3667/1152/(4*sqrt(2*x^2 - x + 3)*x^2 + 20*sqrt(2*x 
^2 - x + 3)*x + 25*sqrt(2*x^2 - x + 3)) + 196043/82944/(2*sqrt(2*x^2 - x + 
 3)*x + 5*sqrt(2*x^2 - x + 3))
 
3.4.56.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 220 vs. \(2 (90) = 180\).

Time = 0.30 (sec) , antiderivative size = 220, normalized size of antiderivative = 1.96 \[ \int \frac {2+x+3 x^2-x^3+5 x^4}{(5+2 x)^3 \left (3-x+2 x^2\right )^{3/2}} \, dx=-\frac {52631}{11943936} \, \sqrt {2} \log \left ({\left | -2 \, \sqrt {2} x + \sqrt {2} + 2 \, \sqrt {2 \, x^{2} - x + 3} \right |}\right ) + \frac {52631}{11943936} \, \sqrt {2} \log \left ({\left | -2 \, \sqrt {2} x - 11 \, \sqrt {2} + 2 \, \sqrt {2 \, x^{2} - x + 3} \right |}\right ) - \frac {8779 \, x - 65991}{4292352 \, \sqrt {2 \, x^{2} - x + 3}} + \frac {\sqrt {2} {\left (3594214 \, \sqrt {2} {\left (\sqrt {2} x - \sqrt {2 \, x^{2} - x + 3}\right )}^{3} + 19874490 \, {\left (\sqrt {2} x - \sqrt {2 \, x^{2} - x + 3}\right )}^{2} - 30140067 \, \sqrt {2} {\left (\sqrt {2} x - \sqrt {2 \, x^{2} - x + 3}\right )} + 19989859\right )}}{2985984 \, {\left (2 \, {\left (\sqrt {2} x - \sqrt {2 \, x^{2} - x + 3}\right )}^{2} + 10 \, \sqrt {2} {\left (\sqrt {2} x - \sqrt {2 \, x^{2} - x + 3}\right )} - 11\right )}^{2}} \]

input
integrate((5*x^4-x^3+3*x^2+x+2)/(5+2*x)^3/(2*x^2-x+3)^(3/2),x, algorithm=" 
giac")
 
output
-52631/11943936*sqrt(2)*log(abs(-2*sqrt(2)*x + sqrt(2) + 2*sqrt(2*x^2 - x 
+ 3))) + 52631/11943936*sqrt(2)*log(abs(-2*sqrt(2)*x - 11*sqrt(2) + 2*sqrt 
(2*x^2 - x + 3))) - 1/4292352*(8779*x - 65991)/sqrt(2*x^2 - x + 3) + 1/298 
5984*sqrt(2)*(3594214*sqrt(2)*(sqrt(2)*x - sqrt(2*x^2 - x + 3))^3 + 198744 
90*(sqrt(2)*x - sqrt(2*x^2 - x + 3))^2 - 30140067*sqrt(2)*(sqrt(2)*x - sqr 
t(2*x^2 - x + 3)) + 19989859)/(2*(sqrt(2)*x - sqrt(2*x^2 - x + 3))^2 + 10* 
sqrt(2)*(sqrt(2)*x - sqrt(2*x^2 - x + 3)) - 11)^2
 
3.4.56.9 Mupad [F(-1)]

Timed out. \[ \int \frac {2+x+3 x^2-x^3+5 x^4}{(5+2 x)^3 \left (3-x+2 x^2\right )^{3/2}} \, dx=\int \frac {5\,x^4-x^3+3\,x^2+x+2}{{\left (2\,x+5\right )}^3\,{\left (2\,x^2-x+3\right )}^{3/2}} \,d x \]

input
int((x + 3*x^2 - x^3 + 5*x^4 + 2)/((2*x + 5)^3*(2*x^2 - x + 3)^(3/2)),x)
 
output
int((x + 3*x^2 - x^3 + 5*x^4 + 2)/((2*x + 5)^3*(2*x^2 - x + 3)^(3/2)), x)